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Background

❑ Continual Learning (CL)

➢ When sequentially fine-tuned on multiple downstream tasks, pre-trained vision-language models suffer from 

catastrophic forgetting of general pretraining knowledge and previously learned downstream tasks.
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Background

❑ Replaying historical data is effective

➢ A straightforward method to alleviate forgetting is to save (part of) historical 

data for training together with new data.

➢ Replay-based methods are impractical when pre-training data of many 

models is unavailable and storing historical data raises privacy concerns.

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝔼 𝑥,𝑦 ∼𝒟𝑡 ℓ𝑐𝑒 𝑦, 𝑓 𝑥, 𝜃𝑡 + ℒ𝑟𝑒𝑝𝑙𝑎𝑦

ℒ𝑟𝑒𝑝𝑙𝑎𝑦 can be 𝔼 𝑥,𝑦 ∼𝒟1:𝑡−1 ℓ𝑐𝑒 𝑦, 𝑓 𝑥, 𝜃𝑡 or 𝔼 𝑥,𝑦 ∼𝒟1:𝑡−1 𝐷𝐾𝐿(𝑓 𝑥, 𝜃𝑡−1 ∣∣ 𝑓 𝑥, 𝜃𝑡 )

Can synthetic data from latest diffusion models help preserve pre-trained 

VLMs’ knowledge during continual learning, and if so, how?

Synthetic data is ready for 

supplement when training 

data is scarce[1]

[1] Is synthetic data from generative models ready for image recognition. ICLR. 2023

but not necessarily practical
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Background

❑ Two decoupled sub-questions

Q1: How can diffusion model generate to approximate both pre-training and downstream task data of VLMs?

Q2: How can the generated data be used to mitigate forgetting?

① Synthetic pre-training data needs to have a wide distribution in the embedding space of the VLM.

② Synthetic downstream data needs to be customized for downstream tasks of different domains.

③ Synthetic images and corresponding text prompts need to be highly aligned in the VLM’s embedding space.

① Given the generation overhead, we should use as little synthetic data as possible.

② Aligning model outputs before and after learning new tasks via knowledge distillation is intuitive. However, when 

the amount of synthetic data is limited, additional regularization is necessary to alleviate overfitting.
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Method: Image Generation

❑ Generate images from class names

➢ Maintain a class pool 𝑃 for class names.

➢ Step 2: Before learning a new task, sample class names 𝑐

from 𝑃 several times and template them with “a photo of a 

{𝑐}.” to prompt diffusion model to generate images.

➢ Step 1: Initialize 𝑃 with 𝐶0 , 𝐶0 is semantically non-

overlapping visual concepts sampled from different synsets

to approximate pre-training data.

➢ Step3: After learning of task 𝑡 (𝑡 ≥ 1), the class names of 

task 𝑡 is added to 𝑃, i.e., 𝑃 =∪𝑖=0
𝑡 𝐶𝑖 .

Q1: How can diffusion model generate to approximate both pre-training and downstream task data of VLMs?
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Method: Framework Overview

GIFT: Generated data Improves continual Fine-Tuning

➢ Synthetic Data-based Distillation aligns output of current model with previous model on matching synthetic image-text pairs.

➢ Adaptive Weight Consolidation employs a weighted 𝑙2 penalty to limit parameter changes causing forgetting and overfitting.

Q2: How can the generated data be used to mitigate forgetting?
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Method: Synthetic Data-based Distillation 

❑ Contrastive Distillation

❑ Image-Text Alignment

➢ To better align the modalities, the distillation loss is implement in a 

contrastive manner similar to CLIP’s pre-training objective.
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➢ Teacher models also suffer from forgetting. Combining image-text alignment hard targets with distillation soft targets

helps neutralize error information in the teacher model’s outputs.
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Method: Adaptive Weight Consolidation

❑ Overfitting of Distillation with Limited Synthetic Data

❑ Adaptive Weight Consolidation

➢ A simple 𝑙2 penalty can keep the model in the flat minimum reached during pre-training but greatly sacrifices plasticity.

➢ We use gradients of the distillation loss to localize parameter updates that cause forgetting and impose a larger penalty.
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Experiments

❑ Datasets

➢ MTIL[2]: Multi-domain Task Incremental Learning

➢ 11 datasets from different domains

➢ Coarse-grained and fine-grained tasks

❑ Metrics
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[2] Preventing Zero-Shot Transfer Degradation in Continual Learning of Vision-Language Models. ICCV. 2023
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Experiments

❑ Main Results

➢ GIFT achieves a balance between learning new knowledge and maintaining general knowledge without 

raising storage and privacy issues.
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Experiments

❑ Ablation of Distillation Mechanism

➢ The default settings are marked in gray , which employs a contrastive distillation loss, the last CLIP model as the 

teacher model, and 𝛽 = 0.25 for ITA scale.

❑ Accuracy Curve of Different Tasks (Order I)
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Experiments

❑ Ablation of Image Generation

➢ Generating 1k per task yields stable performance.

➢ Compatible with fewer denoising steps and faster generation

➢ Eliminating synthetic images for specific downstream 

tasks exacerbates forgetting of these tasks.

➢ Not sensitive 

to guidance 

scale value.
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Thank you !


