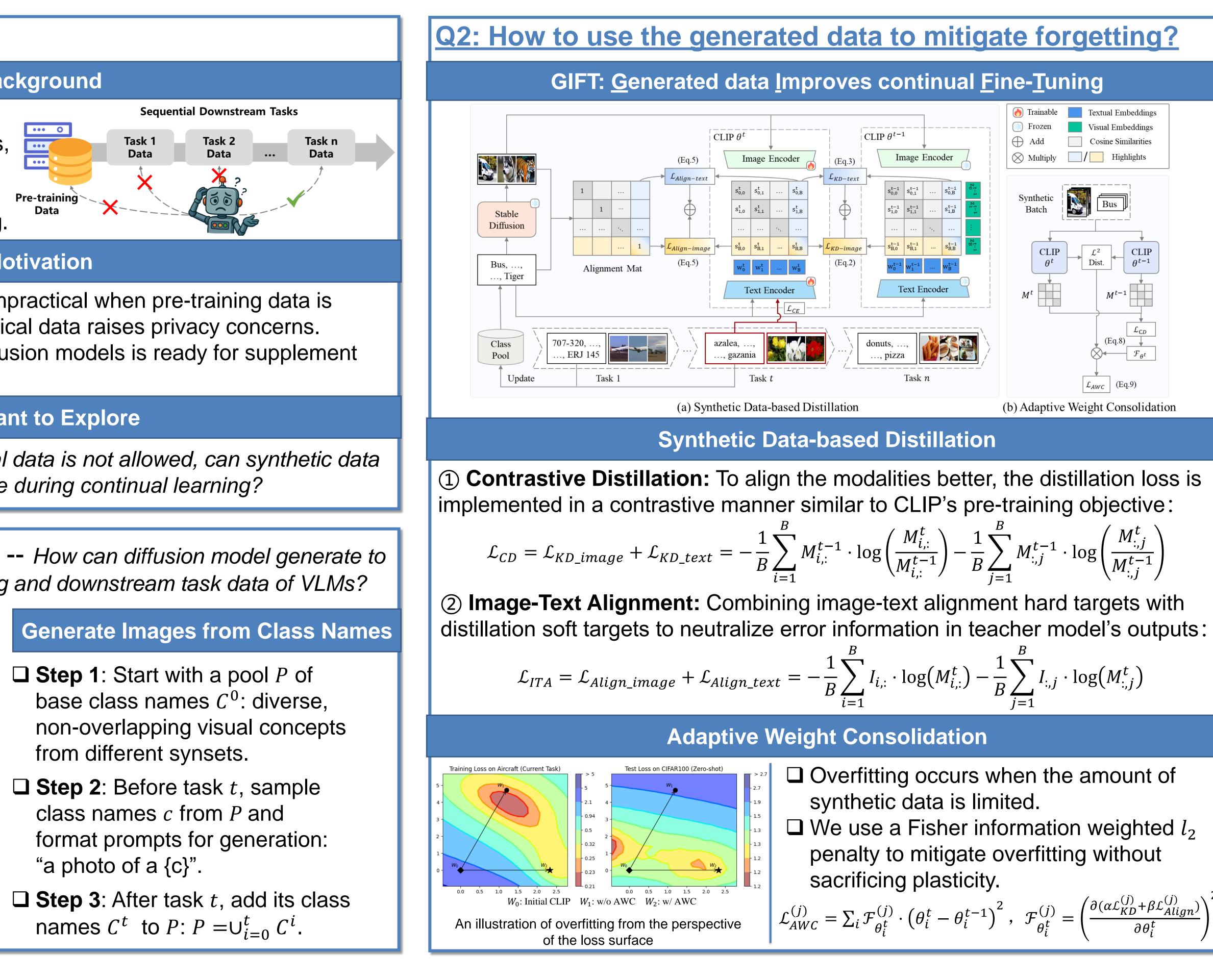




# Introduction

# Background

□ When sequentially fine-tuned on multiple downstream tasks, pre-trained vision-language models (VLMs) suffer from severe catastrophic forgetting.



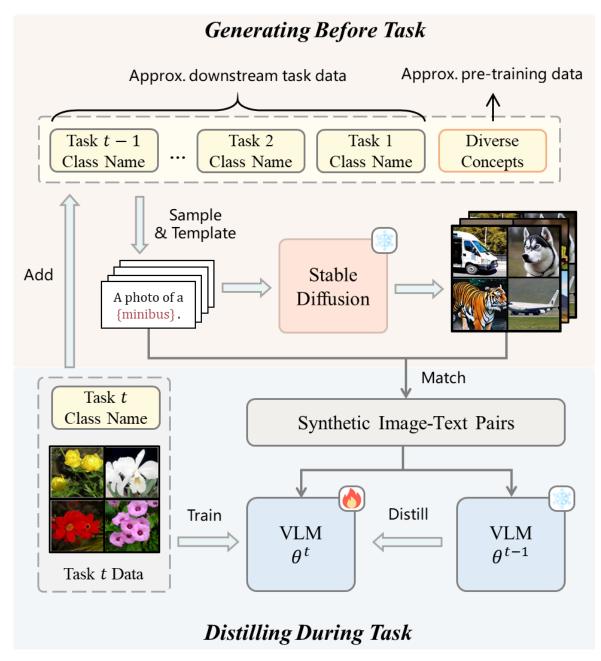
## **Motivation**

Replay-based methods are impractical when pre-training data is unavailable and storing historical data raises privacy concerns. □ Synthetic data from latest diffusion models is ready for supplement when training data is scarce.

## We Want to Explore

When direct access to historical data is not allowed, can synthetic data help preserve VLM's knowledge during continual learning?

# **Q1: How to generate?** approximate both the pre-training and downstream task data of VLMs?



# Synthetic Data is an Elegant GIFT for Continual Vision-Language Models Bin Wu<sup>1</sup>\*, Wuxuan Shi<sup>1</sup>\*, Jinqiao Wang<sup>2</sup>, Mang Ye<sup>1†</sup> <sup>1</sup>Wuhan University, <sup>2</sup>Wuhan AI Research

# CLIP $\theta^{t-1}$ Cosine Similaritie Highlight $\bigotimes$ Multiply Image Encode Bus Synthetic Batch $W_0^{t-1} W_1^{t-1} \dots W_{t-1}^{t-1}$ Text Encoder (Eq.8) $\mathcal{L}_{AWC}$ (Eq.9) (b) Adaptive Weight Consolidation

$$\log\left(\frac{M_{i,:}^{t}}{M_{i,:}^{t-1}}\right) - \frac{1}{B}\sum_{j=1}^{B}M_{:,j}^{t-1} \cdot \log\left(\frac{M_{:,j}^{t}}{M_{:,j}^{t-1}}\right)$$

$$I_{i,:} \cdot \log(M_{i,:}^{t}) - \frac{1}{B} \sum_{j=1}^{B} I_{:,j} \cdot \log(M_{:,j}^{t})$$

• Overfitting occurs when the amount of synthetic data is limited.

 $\Box$  We use a Fisher information weighted  $l_2$ penalty to mitigate overfitting without sacrificing plasticity.

$$\mathcal{F}_{\theta_{i}^{t}}^{(j)} \cdot \left(\theta_{i}^{t} - \theta_{i}^{t-1}\right)^{2}, \quad \mathcal{F}_{\theta_{i}^{t}}^{(j)} = \left(\frac{\partial(\alpha \mathcal{L}_{KD}^{(j)} + \beta \mathcal{L}_{Align}^{(j)})}{\partial \theta_{i}^{t}}\right)^{2}$$

# **Experiments**

# We conduct experiments and achieves SOTA on the MTIL benchmark, which spans 11 datasets across different domains.

Table 1. Comparison of SOTA methods on MTIL Order I.

| Method             | Transfer | Δ     | Avg. | Δ     | Last | Δ     | Method             | Transfer | $\Delta$ | Avg. | $\Delta$ | Last | $\Delta$ |
|--------------------|----------|-------|------|-------|------|-------|--------------------|----------|----------|------|----------|------|----------|
| Zero-shot          | 69.4     | -     | 65.3 | -     | 65.3 | _     | Zero-shot          | 65.4     | -        | 65.3 | -        | 65.3 | -        |
| Continual Finetune | 44.6     | -     | 55.9 | -     | 77.3 | -     | Continual Finetune | 46.6     | -        | 56.2 | -        | 67.4 | -        |
| $l_2$ baseline     | 61.0     | 0.0   | 62.7 | 0.0   | 75.9 | 0.0   | $l_2$ baseline     | 60.6     | 0.0      | 68.8 | 0.0      | 77.2 | 0.0      |
| LwF [33]           | 56.9     | -4.1  | 64.7 | +2.0  | 74.6 | -1.3  | LwF [33]           | 53.2     | -7.4     | 62.2 | -6.6     | 71.9 | -5.3     |
| iCaRL [44]         | 50.4     | -10.6 | 65.7 | +3.0  | 80.1 | +4.2  | iCaRL [44]         | 50.9     | -9.7     | 56.9 | -11.9    | 71.6 | -5.6     |
| LwF-VR [11]        | 57.2     | -3.8  | 65.1 | +2.4  | 76.6 | +0.7  | LwF-VR [11]        | 53.1     | -7.5     | 60.6 | -8.2     | 68.3 | -3.9     |
| WiSE-FT [56]       | 52.3     | -8.7  | 60.7 | -2.0  | 77.7 | +1.8  | WiSE-FT [56]       | 51.0     | -9.6     | 61.5 | -7.3     | 72.2 | -5.0     |
| ZSCL [64]          | 68.1     | +7.1  | 75.4 | +12.7 | 83.6 | +7.7  | ZSCL [64]          | 64.2     | +3.6     | 74.5 | +5.7     | 83.4 | +6.2     |
| MoE-Adapter [62]   | 68.9     | +7.9  | 76.7 | +14.0 | 85.0 | +9.1  | MoE-Adapter [62]   | 64.3     | +3.7     | 74.7 | +5.9     | 84.1 | +6.9     |
| GIFT (Ours)        | 69.3     | +8.3  | 77.3 | +14.6 | 86.0 | +10.1 | GIFT (Ours)        | 65.9     | +5.3     | 75.7 | +6.9     | 85.3 | +8.1     |

| (a) <b>Distillation Loss.</b> |          |      |      |  |  |  |  |
|-------------------------------|----------|------|------|--|--|--|--|
| Loss                          | Transfer | Avg. | Last |  |  |  |  |
| Feat. Dist.                   | 64.0     | 71.6 | 80.5 |  |  |  |  |
| Image-only                    | 66.8     | 75.1 | 84.1 |  |  |  |  |
| Text-only                     | 64.7     | 71.9 | 81.8 |  |  |  |  |
| Contrastive                   | 68.9     | 76.6 | 85.0 |  |  |  |  |

### Generating 1k per task yields stable performance.



### □ Compatible with fewer denoising steps and faster generation.

| Method       | Denoising Steps | Transfer    | Avg.        | Last        |  |  |  |
|--------------|-----------------|-------------|-------------|-------------|--|--|--|
| GIFT w/ AWC  | 50 Steps        | <b>69.3</b> | <b>77.3</b> | <b>86.0</b> |  |  |  |
| GIFT w/o AWC | 50 Steps        | 68.9        | 76.6        | 85.0        |  |  |  |
| GIFT w/ AWC  | 25 Steps        | 69.2        | 77.2        | 85.8        |  |  |  |
| GIFT w/o AWC | 25 Steps        | 69.2        | 76.6        | 84.8        |  |  |  |



### **Comparison to SOTA**

Table 2. Comparison of SOTA methods on MTIL Order II.

## Ablation of Distillation Mechanism

| (b) Teacher Model. |          |      |      | (c) Scale of Image-Text Alignment. |             |      |      |  |
|--------------------|----------|------|------|------------------------------------|-------------|------|------|--|
| Teacher            | Transfer | Avg. | Last | ITA Scale                          | Transfer    | Avg. | Last |  |
| Initial CLIP       | 69.1     | 74.0 | 80.1 | $\beta = 0.0$                      | 68.3        | 76.3 | 84.7 |  |
| Last CLIP          | 68.9     | 76.6 | 85.0 | $\beta = 0.25$                     | <b>68.9</b> | 76.6 | 85.0 |  |
| WiSE(0.2)          | 69.1     | 76.1 | 83.4 | eta=0.5                            | 68.7        | 76.2 | 84.2 |  |
| WiSE(0.5)          | 69.6     | 75.3 | 81.6 | $\beta = 1.0$                      | 68.5        | 75.4 | 82.4 |  |

### Ablation of Image Generation

Removing task-specific synthetic data worsens forgetting.

