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Introduction

Q1: How to generate? -- How can diffusion model generate to 

approximate both the pre-training and downstream task data of VLMs?

Q2: How to use the generated data to mitigate forgetting?

When direct access to historical data is not allowed, can synthetic data 

help preserve VLM’s knowledge during continual learning?

❑ Replay-based methods are impractical when pre-training data is 

unavailable and storing historical data raises privacy concerns.

❑ Synthetic data from latest diffusion models is ready for supplement 

when training data is scarce.

Motivation

We Want to Explore

❑When sequentially fine-tuned 

on multiple downstream tasks, 

pre-trained vision-language 

models (VLMs) suffer from 

severe catastrophic forgetting.

❑ Step 1: Start with a pool 𝑃 of 

base class names 𝐶0: diverse, 

non-overlapping visual concepts 

from different synsets.

❑ Step 2: Before task 𝑡, sample 

class names 𝑐 from 𝑃 and 

format prompts for generation: 

“a photo of a {c}”.

❑ Step 3: After task 𝑡, add its class 

names 𝐶𝑡 to 𝑃: 𝑃 =∪𝑖=0
𝑡 𝐶𝑖.

Background

Synthetic Data-based Distillation

Adaptive Weight Consolidation

Experiments

GIFT: Generated data Improves continual Fine-Tuning

Generate Images from Class Names

① Contrastive Distillation: To align the modalities better, the distillation loss is 

implemented in a contrastive manner similar to CLIP’s pre-training objective：

② Image-Text Alignment: Combining image-text alignment hard targets with 

distillation soft targets to neutralize error information in teacher model’s outputs：
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❑Overfitting occurs when the amount of 

synthetic data is limited.

❑We use a Fisher information weighted 𝑙2
penalty to mitigate overfitting without 

sacrificing plasticity.
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An illustration of overfitting from the perspective 

of the loss surface

Comparison to SOTA

❑We conduct experiments and achieves SOTA on the MTIL 

benchmark, which spans 11 datasets across different domains.

Ablation of Distillation Mechanism

Ablation of Image Generation

❑ Generating 1k per task yields 

stable performance.

❑ Removing task-specific synthetic data 

worsens forgetting.

❑ Not sensitive to guidance scale value.❑ Compatible with fewer denoising 

steps and faster generation.


